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Equations governing steady three-dimensional 
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The exact equations governing three-dimensional motion of an inviscid non- 
diffusive incompressible fluid stratified in density or of an inviscid non-diffusive 
gas stratified in entropy are given and briefly discussed. 

1. Introduction 
Since the Reynolds number and the P6clet number for most flows occurring 

in the atmosphere are extremely large, the study of the flows of an inviscid and 
non-diffusive fluid is relevant to the understanding of many atmospheric pheno- 
mena. In this paper inviscidness and non-diffusiveness are assumed throughout 
for the fluids considered. The equations governing steady two-dimensional flows 
were given by Madame Dubreil-Jacotin for an incompressible fluid of variable 
density (1935, p. 345, equation (B)) and for an ideal gas of variable entropy 
(1935, p. 346, equation (b ) ) .  These equations were later rediscovered by Prof. 
Long (1953a, b) ,  and have been effectively and fruitfully utilized by him in his 
excellent studies of atmospheric waves. Simplified versions of these equations 
were given by Yih (1958, 1960a, b) ,  who used modified stream functions to remove 
the non-linear terms arising from the convective terms in the Eulerian expression 
of the acceleration in the equations of motion. 

For three-dimensional motion the corresponding equations are not available 
to this day. Of course we always have the Euler equations of motion, the equation 
of continuity, and the equation of conservation of density or of entropy. But 
these basic equations, four of which non-linear, do not give much promise. Before 
their solution can be attempted, their number need to be reduced by some sort of 
elimination, in the same way that such a reduction is effected to produce the final 
single equation of Dubreil-Jacotin for either an incompressible fluid or a gas. 
In  this paper we shall present the three-dimensional counterparts of the equations 
of Madame Dubreil-Jacotin. 

2. Some preliminaries 
It is very helpful to visualize the very pronounced properties of stratified flows 

of inviscid and non-diffusive fluids before we attempt to derive the equations 
sought. If we assume the motion to be steady, the conservation equations are 

(v. grad) p = 0 or (v . grad) X = 0, (1)  
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in which vis the velocity vector, p the density, and S the entropy. These equations 
show that in steady flows the velocity vector must lie in isopycnic surfaces or 
surfaces of constant entropy. Since the circulation along any circuit lying 
entirely in an isopycnic surface or a surface of constant entropy is preserved, this 
circulation must be zero if the flow is supposed to have been established from 
rest. Hence for such a flow the vorticity vector must also lie in an isopycnic 
surface or a surface of constant entropy. (See Yih 1965, p. 14.) Then for the case 
of an incompressible fluid 

v = grada x gradp, o = grad b x gradp, (2 a, b )  

in which o is the vorticity vector, a is a stream function (Yih 1957), the other 
stream function being p, and b a vorticity function of Clebsch (Lamb 1945, 
p. 248), the other vorticity function being p. Of course v and o are related by 

o = curlv. (3) 

pv = grada x g a d s  and w = gradb x gads .  (4% b)  

For a compressible fluid (2 a )  and (2 b )  are to be replaced by 

3. Derivation of the equations for an incompressible fluid 
The equations of steady motion are 

(pv. grad) v = - gradp +pF, ( 5 )  

in which p is the pressure and F the body force per unit mass given by 

F = -grad gz, 

z being the Cartesian co-ordinate measured in the direction of the vertical. If we 
assume (Yih 1958) 

(4) can be written a-s 

which can further be written as 

v’ = (p/po)Bv, o‘ = curlv’, (6) 

(po v’ . V) v’ = - gradp +pF, (5a) 

- 

with 

.pov‘ x o’ = -gradX+pF, 

x =p++p(u2+v2+w2), 
(7) 

u, v, and w being the components of v in the directions of increasing Cartesian 
co-ordinates x, y, and z respectively, and po being a reference density. 

Now since V’ and o’ are still solenoidal, we can write 

v’ = grada x gradp, of = gradP x gradp. (8 a, b )  

(9) 

Then a simple calculation shows that 

v’x o’ = -(v’.gradp)gradp = (o’.grada)gradp. 

This is as it should be, since both the velocity vector and the vorticity vector lie 
in a surface of constant p, and thus their vector product must be parallel to gradp. 
Substituting (9) in (7 ) ,  separating the result into three equations, multiplying 
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these respectively by dx, dy and dz, and adding, we obtain, after an obvious 
simplification, 

po 0'. grad a = ( d H / d p )  - gz, (10) 

in which H = x+pgz (11) 

is a function of p only, since the Bernoulli function is constant in an isopycnic 
surface for steady flows. Now since w' is in an isopycnic surface, 

w'.gradp = 0. (12) 

We shall now use the second equation in (6) and (8 a )  to obtain 

7' = ~ P z z + P x a ~ ~ a , - P a , r ~ ~ - P p y z ~ z - ~ ~ z z + ~ a r ~ P y + ~ a , ~ P z + ~ a , z P z ~  (13) 

6' = (Pug + P Z J  az - Pxa, ay - P a  Fz - (%a, + a z z )  Pa: + %a, Pa, + a, Pz, 

c = (Pzz + Pa, a,) % - Pzx - ( ~ x z  + %Y) P z  + azx Pz + a,, Pv, I - PZY 

in which c7 7' and 5' are the three components of w'. With (13) introduced in (10) 
and (12), we obtain two equations of the two unknowns 01 and p, which are the 
equations sought. For two-dimensional flows in the (x, 2)-plane, w' has only the 
component 7' and gradp in the (2, 2)-plane. Hence (12) is automatically satisfied. 
Furthermore, if we keep the dimensions correct and write 

a = (Vd/Po)Y, 

in which V is a reference velocity, d a reference length, and po a reference density, 
we have 

With 

(14) becomes rtt + rC5 = (dh/dr) - F-2C. (15) 

a = (dll.'/dP) Y, 

We can also recover Yih's form of the equation of Dubreil-Jacotin if we put 

in which $' is the modified stream function used by Yih and 

u' = $;, w' = -+;. 
Since neither +' nor p depends on y ,  the result is 

1 dH gz dp 
$1 +$' =------ 
xx pod+' pod$" 

which is the equation of Dubreil-Jacotin in Yih's form. 
Equations (10) and (13), with w' given by (13), are integrated forms of the 

equations of motion. That (10) results from integration is obvious from its 
derivation. Even (12) results from an integration-the integration along any 
closed circuit in an isopycnic line to obtain the circulation, which is zero if the 
motion started from rest. Thus (10) and (12) are several steps in advance of the 
Euler equations of motion. The equation of continuity is automatically satisfied 
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by (2a)  or (Sa ) .  The first equation in (l), which has been used to obtain ( 5 a ) ,  is 
also automatically satisfied by (2a), or (8a)  taken together with the definition of 
v' in (6). 

The left-hand side of (10) is linear in p, and the left-hand side of (12) is linear 
in a. In  this sense the left-hand sides of (10) and (12) are quasi-linear. If d H / d p  
is linear in p, (10) and (12) are quasi-linear, and a calculation can be performed 
by first assuming a plausible form for a, solving (10) for p, using the result in (12) 
and solving it for a, and repeating the process. 

4. Derivation of the equations for a compressible fluid 

equation of continuity div(pv) = 0 

is automatically satisfied by (4  a). We shall again use the variable h defined by 

For a compressible fluid in steady motion the basic equations are still (5). The 

(17) 

1lY 
= constant x e-s/cp, 

in which po is a reference density and po a reference pressure, and y is the ratio of 
the specific heat cp at constant pressure to the specific heat c, at constant volume. 
With the substitutions (Yih 1960b) 

v' = dhv, p' = p/h, p' = p :  (19) 

the basic equations of motion can be written as 

(p'v' . V) v' = - gradp' +p'hF, 

in which p'/(p')l/y = constant. 

Equation (20) can be written as 

-v 'x w' = -gradX+hF, (22) 

in which (23) 

q' being the magnitude of v'. The equation of continuity in terms of p' and v' is, 
in virtue of the second equation in (l), 

div(p'v') = 0, 

which is automatically satisfied by 

p'v' = grada x gradh. (24) 

We use this form not only because the satisfaction of the equation of continuity 
is assured, but also because the velocity vectors must lie in surfaces of constant 
X or A. Similarly, since the vorticity vector w (and hence w') must also lie in 

(25) 
surfaces of constant A, 

w' = gradpxgradh. 

(26) 

A simple calculation shows that 

p'v' x w' = -(p'v'.gradP)gradh = (w'.grada)gradh. 
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Substituting this in (22), multiplying it by dx, and integrating, we obtain 

in which H = X+gzh. 
The other equation is 

w’.gradh = 0. 

The expression for w t  is now a little more complicated. It is 

o‘ = curl v’ = curl [ (l/p‘) grad a x grad A]. (30) 

We shall not expand it in full. Equations (27) and (28), with o’ given by (30), axe 
the equations sought. The quantity p’ can be expressed in terms of H ,  qt and h by 
the use of (28). 

For two-dimensional flows, 
a = Po V d Y ,  

and (27) becomes 

If we put a = (d11rt/d4Y, 

we obtain Yih’s form of the equation of Dubreil-Jacotin 

in which 

Equations (27) and (28) are a few steps in advance of the basic equations of 
motion because they have been obtained from the latter equations by integration. 

5.  Discussion 
Actually, (10) and (12) governing the motionof a stratified incompressible fluid 

are also the equations governing steady vortex motion of a homogeneous incom- 
pressible fluid. Isopycnic surfaces would of course have no definite meaning, but 
we can replace p by L, which is constant on a Lamb surface with streamlines 
and vorticity lines imbedded in it. Since p is now constant, the last term in (10) 
drops out for vortex motion, which is then governed by 

dH 
po.grada = - dL and o.gradL = 0, (34) 

with o given by (13)) in which p is replaced by L, and the accents on &’, 7’ and 5’ 
are removed. Of course, the motion is now not assumed to have started from rest. 
It would be irrotational in that case. 
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For a homentropic gas in steady vortex motion, the governing equations are 

1 dH 
-o .grada = - 
P d L  

and w.gradL = 0, (35) 

in which (36) 

Equations (34) and (35) are the results of first integrations of the vorticity 
equations. It is a little surprising that they have not been found before. 

Finally, we remark that the solution of (10) and (12)) or (27) and (29)) or (34), 
or (35),  is not unique. For if a is a solution so is a + B'(p), or u +$'(A), or u + P(L), 
as the case may be, but the velocity field is uniquely determined. 

o = curl v = curl [( l/p) grad a x grad L]. 

This work has been jointly sponsored by the National Science Foundation and 
the Army Research Office (Durham). 
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